I appropriated, and over-simplified, the title of this blog from a recent article by Kansa et al. 2019; because it’s so true. As part of the Kansa et al. article, which lays out a series of guidelines to improve “data management, documentation, and publishing practices so that primary data can be more efficiently discovered, understood, aggregated, and synthesized by wider research communities” (specifically in archaeology), the authors state, “…we strongly emphasize the importance of viewing data as a first-class research outcome that is as important as, if not more important than, the interpretive publications that result from their analysis.” I personally interpret this to mean that the data you produce are a more valuable contribution to your discipline than are many of your interpretations. Though this may sting a little for some to hear, I’m quite content with this idea. Science is bigger than me and my little sphere of knowledge and expertise, and I’m good with that. As much as any academic is ever truly pleased with the final manuscript that’s been accepted to a peer-reviewed journal, there’s a good chance that you know that the results and conclusions drawn from that study are not even close to being 100% correct; especially in archaeology. We attempt to reconstruct past human behavior from an incomplete archaeological record, so the conclusions we draw about an event that created a biface or how North America was initially colonized can never be completely accurate. We know that there are flaws in our data (taphonomic and spatial bias), problems with the way statistical tests are interpreted, and even incongruences with the theories we employ to explain sets of behaviors. However, the data that we generate to come to our conclusion can help create even better results if our data are synthesized with data from others and reused. The more data we generate, and then reuse, the better our ability to resolve some of the issues stated above. Ultimately, we can paint a more accurate picture of any past event if our data are made available so that future generations of scientists can augment our past research. This is how science builds upon foundation works. But this work doesn’t come without some costs. Though not fully acknowledged, we know that the data that we generate are, in fact, very valuable. From a monetary perspective, it can cost a lot of money to generate data, from lab to field equipment and labor; and those who practice archaeology know that our work is a spendy endeavor. And of course, there is the intrinsic value in the information that our research seeks to accomplish, through an enhanced understanding of some past phenomena or occurrence. And there are even more measures by which we can see the worth of our data.
In the scientific method, the reuse of existing datasets is paramount. The methods and hypotheses we generate are built on this ideal and is why the FAIR movement (finable, accessible, interoperable, and reusable) currently has momentum across the sciences. And though FAIR is in vogue, it’s still a struggle to get scientists to share and provide data in trusted, open-access, repositories for others to reuse and even evaluate. Recently, the editor of the journal Molecular Brain, Tsuyoshi Miyakawa penned an editorial entitled “No raw data, no science: another possible source of the reproducibility crisis”, a commentary on data availability in peer-review. He writes, “….97% of the 41 manuscripts did not present the raw data supporting their results when requested by an editor, suggesting a possibility that the raw data did not exist from the beginning, at least in some portions of these cases.” Data that did not exist? That’s really hard to stomach, but it seems to be an unfortunate truth. And he’s not alone in his observations. The editors of the Lancet, one of the most prestigious journals in medicine (impact factor = 59.102 versus Journal of Archaeological Science impact factor = 3.030) recently retracted a very high-profile article titled “Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis” . The authors claimed to use an international database of patient data created by the company Surgisphere Corporation to evaluate the efficacy of Hydroxychloroquine in treating Covid 19. Their results are notable and resulted in the WHO recommending the discontinuation of this as a treatment, however this may have been done in haste. It turns out Surgisphere “declined to make the underlying data…available for an independent audit”, calling into question their results. It’s entirely possible that their data did not really exist. How is it even possible that this type of academic fraud occurs in today’s science community? Will we ever be able to truly say that science abides by the FAIR principle when there are academics and journals that don’t hold scientists and their data accountable like we do of their interpretations of data? As someone who works for a Center who’s mission it is to archive, preserve, and make data available, I hope that the archaeology community begins to embrace the idea that their data, it’s quality, and availability, are just as important as the original interpretations of that data. There is good and bad science. Good science, and scientists, make data available. This enables others to reproduce and corroborate, or even dispute, conclusions drawn in a study. That’s how real science is intended to work. Findable, accessible, interoperable, and reusable/reproducible data are the foundation of good science, and are probably more important than our interpretations. Our ability to serve as trusted scientists lies not only in our ability push the frontiers of knowledge, but also in the manner in which we do it; and that includes letting our data go, be reused, and productive in someone else’s hands.
0 Comments
Leave a Reply. |
AuthorJust my thoughts on human behavior, society, and how we can learn important lessons from our prehistory. ArchivesCategories |